Step of Proof: adjacent_wf
11,40
postcript
pdf
Inference at
*
I
of proof for Lemma
adjacent
wf
:
T
:Type,
L
:(
T
List),
x
,
y
:
T
. adjacent(
T
;
L
;
x
;
y
)
latex
by ((Unfold `adjacent` 0)
CollapseTHEN (MaAuto
))
latex
C
.
Definitions
adjacent(
T
;
L
;
x
;
y
)
,
x
:
A
.
B
(
x
)
,
#$n
,
,
l
[
i
]
,
x
:
A
.
B
(
x
)
,
x
:
A
B
(
x
)
,
Void
,
x
:
A
B
(
x
)
,
{
i
..
j
}
,
{
x
:
A
|
B
(
x
)}
,
,
i
j
<
k
,
A
B
,
P
&
Q
,
A
,
False
,
P
Q
,
a
<
b
,
n
-
m
,
-
n
,
n
+
m
,
||
as
||
,
type
List
,
s
=
t
,
t
T
,
Type
Lemmas
member
wf
,
int
seg
wf
,
length
wf1
,
select
wf
origin